Меню
Главная
Авторизация/Регистрация
 
Главная arrow Экономика arrow Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

Экономическая интерпретация остаточных величин еi

Каждый их остатков

характеризует отклонение фактического значения yi от теоретического значения , рассчитанного по построенной регрессионной модели и определяющего, какого среднего значения следует ожидать, когда фактор Х принимает значение xi.

Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.

Значения остатков i (таблица остатков из диапазона А 98:С 128) имеют как положительные, так и отрицательные отклонения от ожидаемого в среднем объема выпуска продукции (которые в итоге уравновешиваются, т.е.).

Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом .

Вывод:

Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции имеют три предприятия - с номерами 6, 20, 27, а максимальные отрицательные отклонения - три предприятия с номерами 8, 24, 26 .Именно эти шесть предприятий подлежат дальнейшему экономическому анализу для выяснения причин наибольших отклонений объема выпускаемой ими продукции от ожидаемого среднего объема и выявления резервов роста производства.

Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.

Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме Рабочего файла.

Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл. 2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).

Таблица 2.10 Регрессионные модели связи

Вид уравнения

Уравнение регрессии

Индекс детерминации R2

Полином 2-го порядка

0,0004х 2+0,677х+31,101

0,8353

Полином 3-го порядка

5Е-0,6х 3-0,0075х 2+4,9167х-704,19

0,8381

Степенная функция

0,3458х 1,1589

0,8372

Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.

Вывод: Максимальное значение индекса детерминации R2 = 0,8381. Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид 5Е-0,6х 3-0,0075х 2+4,9167х-704,19

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ
 

СКАЧАТЬ ОРИГИНАЛ
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
1. Постановка задачи статистического исследования2. Выводы по результатам выполнения лабораторной работы2.1 Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом2.2 Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки2.3 Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения2.4 Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r2.5 Анализ адекватности и практической пригодности построенной линейной регрессионной модели2.6 Определение значимости коэффициентов уравнения2.7 Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности2.8 Определение практической пригодности построенной регрессионной модели2.9 Общая оценка адекватности регрессионной модели по F-критерию Фишера2.10 Оценка погрешности регрессионной модели2.11 Экономическая интерпретация коэффициента регрессии а 12.12 Экономическая интерпретация коэффициента эластичности2.13 Экономическая интерпретация остаточных величин еi