Меню
Главная
Авторизация/Регистрация
 
Главная arrow Экономика arrow Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel

Экономическая интерпретация коэффициента регрессии а 1

В случае линейного уравнения регрессии

=a0+a1x

величина коэффициента регрессии a1 показывает, на сколько в среднем (в абсолютном выражении) изменяется значение результативного признака Y при изменении фактора Х на единицу его измерения. Знак при a1 показывает направление этого изменения.

Вывод:

Коэффициент регрессии а 1 =1,0894 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается в среднем на 1,0894 млн руб.

Экономическая интерпретация коэффициента эластичности

С целью расширения возможностей экономического анализа явления используется коэффициент эластичности

,

который измеряется в процентах и показывает, на сколько процентов изменяется в среднем результативный признак при изменении факторного признака на 1%.

Средние значения и приведены в таблице описательных статистик.

Расчет коэффициента эластичности:

=1,0894. 550 =1,14%

Вывод:

Значение коэффициента эластичности Кэ=1,14 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 1,14%.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

СКАЧАТЬ ОРИГИНАЛ
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
1. Постановка задачи статистического исследования2. Выводы по результатам выполнения лабораторной работы2.1 Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом2.2 Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки2.3 Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения2.4 Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r2.5 Анализ адекватности и практической пригодности построенной линейной регрессионной модели2.6 Определение значимости коэффициентов уравнения2.7 Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности2.8 Определение практической пригодности построенной регрессионной модели2.9 Общая оценка адекватности регрессионной модели по F-критерию Фишера2.10 Оценка погрешности регрессионной модели2.11 Экономическая интерпретация коэффициента регрессии а 12.12 Экономическая интерпретация коэффициента эластичности2.13 Экономическая интерпретация остаточных величин еi