Меню
Главная
Авторизация/Регистрация
 
Главная arrow Информатика arrow База данных, хранящая в себе информацию о командах NBA

ВВЕДЕНИЕ

На сегодняшний день в мире работают сотни миллионов персональных

компьютеров. Ученые, экономисты, политики считают, что к началу третьго тысячелетия:

количество компьютеров в мире сровняется с числом жителей развитых стран.

большинство этих компьютеров будет включено в мировые информационные сети.

Вся накопленная человечеством к началу третьего тысячелетия информация будет переведена в компьютерную (двоичную) форму, а вся информация будет готовиться при помощи (или при участии) компьютеров; вся информация будет бессрочно храниться в компьютерных сетях;

полноценный член общества третьего тысячелетия должен будет каждодневно взаимодействовать с локальными, региональными или мировыми сетями с помощью компьютеров.

При такой компьютеризации практически всех отраслей жизнедеятельности человека возникает вопрос о создании программ позволяющих создавать подобные базы данных. Поэтому и была разработана данная программа ,которая позволяет создать базу данных, хранящую в себе информацию о командах NBA.

БАЗА ДАННЫХ И СУБД

База данных

База данных (БД) - это информационная модель, позволяющая в упорядоченном виде хранить данные о группе объектов, обладающих одинаковым набором свойств.

Существует несколько различных структур информационных моделей и соответственно различных типов баз данных: табличные, иерархические и сетевые.

Табличная база данных содержит перечень объектов одного типа, то есть объектов, имеющих одинаковый набор свойств. Такую базу данных удобно представлять в виде двумерной таблицы: в каждой ее строке последовательно размещаются значения свойств одного из объектов; каждое значение свойства - в своем столбце, озаглавленном именем свойства.

Столбцы такой таблицы называют полями; каждое поле характеризуется своим именем (именем соответствующего свойства) и типом данных, представляющих значения данного свойства.

Поле базы данных - это столбец таблицы, содержащий значения определенного свойства.

Строки таблицы являются записями об объекте; эти записи разбиты на поля столбцами таблицы, поэтому каждая запись представляет собой набор значений, содержащихся в полях.

Запись базы данных - это строка таблицы, содержащая набор значений свойств, размещенный в полях базы данных.

Каждая таблица должна содержать, по крайней мере, одно ключевое поле, содержимое которого уникально для каждой записи в этой таблице. Ключевое поле позволяет однозначно идентифицировать каждую запись в таблице. Ключевое поле - это поле, значение которого однозначно определяет запись в таблице.

В качестве ключевого поля чаще всего используют поле, содержащее тип данных счетчик. Однако иногда удобнее в качестве ключевого поля таблицы использовать другие поля: код товара, инвентарный номер и т. п. Тип поля определяется типом данных, которые оно содержит. Поля могут содержать данные следующих основных типов:

счетчик - целые числа, которые задаются автоматически при вводе записей. Эти числа не могут быть изменены пользователем;

текстовый - тексты, содержащие до 255 символов;

числовой - числа;

дата/время - дата или время;

денежный - числа в денежном формате;

логический - значения Истина (Да) или Ложь (Нет);

гиперссылка - ссылки на информационный ресурс в Интернете (например, Web-сайт).

Поле каждого типа имеет свой набор свойств. Наиболее важными свойствами полей являются:

размер поля - определяет максимальную длину текстового или числового поля;

формат поля - устанавливает формат данных;

обязательное поле - указывает на то, что данное поле обязательно надо заполнить.

Рассмотрим, например, базу данных "Компьютер", которая содержит перечень объектов (компьютеров), каждый из которых имеет имя (название). В качестве характеристик (свойств) можно рассмотреть тип установленного процессора и объем оперативной памяти. Поля Название и Тип процессора являются текстовыми, Оперативная память - числовым, а поле № п/п - счетчиком, как показано в таблице 1

Таблица 1-Табличная база данных

№ п/п

Название

Тип процессора

Оперативная память (Мбайт)

1

Compaq

Celeron

64

2

Dell

Pentium III

128

3

IBM

Pentium 4

256

При этом каждое поле обладает определенным набором свойств. Например, для поля Оперативная память задан формат данных целое число.

Иерархическая модель данных -- представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.

Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможна ситуация, когда объект-предок не имеет потомков или имеет их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами (в программировании применительно к структуре данных дерево устоялось название братья).

Основными информационными единицами в иерархической модели данных являются сегмент и поле. Поле данных определяется как наименьшая неделимая единица данных, доступная пользователю.

Для сегмента определяются тип сегмента и экземпляр сегмента. Экземпляр сегмента образуется из конкретных значений полей данных. Тип сегмента -- это поименованная совокупность входящих в него типов полей данных.

Как и сетевая, иерархическая модель данных базируется на графовой форме построения данных, и на концептуальном уровне она является просто частным случаем сетевой модели данных. В иерархической модели данных вершине графа соответствует тип сегмента или просто сегмент, а дугам -- типы связей предок -- потомок. В иерархических структурах сегмент -- потомок должен иметь в точности одного предка. Иерархическая модель представляет собой связный неориентированный граф древовидной структуры, объединяющий сегменты. Иерархическая БД состоит из упорядоченного набора деревьев.

Сетевая модель данных -- логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных.

Cетевая модель была первым подходом, использовавшимся при создании баз данных в конце 50-ых - начале 60-ых годов. Активным пропагандистом этой модели был Чарльз Бахман. Главным конкурентом тогда у нее была иерархическая модель данных, представленная ведущим продуктом компании IBM в области баз данных - IBM IMS. В конце 60-ых годов Эдгаром Коддом была предложена реляционная модель данных и после долгих и упорных споров с Бахманом реляционная модель приобрела большую популярность и теперь является доминирующей на рынке СУБД.

Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.

Сетевая БД состоит из набора экземпляров определенного типа записи и набора экземпляров определенного типа связей между этими записями.

Тип связи определяется для двух типов записи: предка и потомка. Экземпляр типа связи состоит из одного экземпляра типа записи предка и упорядоченного набора экземпляров типа записи потомка. Для данного типа связи L с типом записи предка P и типом записи потомка C должны выполняться следующие два условия:

каждый экземпляр типа записи P является предком только в одном экземпляре типа связи L;

каждый экземпляр типа записи C является потомком не более чем в одном экземпляре типа связи L.

Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат памяти и оперативности.

Недостатком сетевой модели данных являются высокая сложность и жесткость схемы БД, построенной на ее основе. Поскольку логика процедуры выборки данных зависит от физической организации этих данных, то эта модель не является полностью независимой от приложения. Другими словами, если необходимо изменить структуру данных, то нужно изменить и приложение.

Реляционная модель данных (РМД) -- логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка.

На реляционной модели данных строятся реляционные базы данных.

Реляционная модель данных включает следующие компоненты:

Структурный аспект (составляющая) -- данные в базе данных представляют собой набор отношений.

Аспект (составляющая) целостности -- отношения (таблицы) отвечают определенным условиям целостности. РМД поддерживает декларативные ограничения целостности уровня домена (типа данных), уровня отношения и уровня базы данных.

Аспект (составляющая) обработки (манипулирования) -- РМД поддерживает операторы манипулирования отношениями (реляционная алгебра, реляционное исчисление).

Термин «реляционный» означает, что теория основана на математическом понятии отношение (relation). В качестве неформального синонима термину «отношение» часто встречается слово таблица. Необходимо помнить, что «таблица» есть понятие нестрогое и неформальное и часто означает не «отношение» как абстрактное понятие, а визуальное представление отношения на бумаге или экране. Некорректное и нестрогое использование термина «таблица» вместо термина «отношение» нередко приводит к недопониманию. Наиболее частая ошибка состоит в рассуждениях о том, что РМД имеет дело с «плоскими», или «двумерными» таблицами, тогда как таковыми могут быть только визуальные представления таблиц. Отношения же являются абстракциями, и не могут быть ни «плоскими», ни «неплоскими».

Для лучшего понимания РМД следует отметить три важных обстоятельства:

модель является логической, то есть отношения являются логическими (абстрактными), а не физическими (хранимыми) структурами;

для реляционных баз данных верен информационный принцип: всё информационное наполнение базы данных представлено одним и только одним способом, а именно -- явным заданием значений атрибутов в кортежах отношений; в частности, нет никаких указателей (адресов), связывающих одно значение с другим;

наличие реляционной алгебры позволяет реализовать декларативное программирование и декларативное описание ограничений целостности, в дополнение к навигационному (процедурному) программированию и процедурной проверке условий.

Принципы реляционной модели были сформулированы в 1969--1970 годах Э. Ф. Коддом (E. F. Codd). Идеи Кодда были впервые публично изложены в статье «A Relational Model of Data for Large Shared Data Banks», ставшей классической.

Строгое изложение теории реляционных баз данных (реляционной модели данных) в современном понимании можно найти в книге К. Дж. Дейта. «C. J. Date. An Introduction to Database Systems» («Дейт, К. Дж. Введение в системы баз данных»).

Наиболее известными альтернативами реляционной модели являются иерархическая модель, и сетевая модель. Некоторые системы, использующие эти старые архитектуры, используются до сих пор. Кроме того, можно упомянуть об объектно-ориентированной модели, на которой строятся так называемые объектно-ориентированные СУБД, хотя однозначного и общепринятого определения такой модели нет.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
СКАЧАТЬ ОРИГИНАЛ
База данных, хранящая в себе информацию о командах NBA