Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях

Параметрический режим работы нелинейного элемента

При реализации некоторых устройств аппаратуры связи, работа которых основана на использовании нелинейных электрических цепей (элементов) и бигармоническом воздействии, часто возникает практическая ситуация, когда амплитуда одного из напряжений значительно больше другого. Например, в преобразователе частоты супергетеродинного радиоприемного устройства амплитуда преобразуемого сигнала значительно меньше амплитуды напряжения местного источника гармонического напряжения (гетеродином). В этих условиях НЭ для сигнала с малой амплитудой выступает в качестве параметрического элемента. Графическая иллюстрация такого режима представлена на рисунке 9.

Графическая иллюстрация параметрического режима работы

Рис. 9. Графическая иллюстрация параметрического режима работы

К нелинейному элементу с вольт-амперной характеристикой приложены два напряжения: гармонический сигнал с большой амплитудой и малое напряжение , в общем случае не обязательно гармоническое.

Учитывая малую величину напряжения по сравнению c , можно считать участок характеристики, на которой в данный момент времени действует напряжение , практически линейным (фрагмент ВАХ на рисунке 9). При этом напряжение действует как изменяющееся во времени напряжение смещения, т. е. источник перемещает рабочую точку на характеристике по закону . Таким образом, можно считать, что для малого колебания нелинейный элемент является линейным, но с изменяющейся по закону крутизной . Такой элемент и называется параметрическим, причем в роли переменного параметра выступает крутизна вольт-амперной характеристики.

Выше уже говорилось о том, что очень важно обеспечить минимизацию побочных продуктов взаимодействия напряжений и , а также подчеркнуть, по возможности, полезную комбинационную составляющую. Рассмотрим условия, при которых может быть решена эта задача, для чего получим аналитическое выражение для тока через НЭ в общем виде.

Если на вход НЭ с характеристикой воздействуют два колебания: , причем выполняется неравенство

(29)

а амплитуда напряжения такова, что оно не выходит за пределы рабочей области ВАХ - < 1 В, то выражение для тока через НЭ можно представить в виде ряда Тейлора по степеням малого напряжения вблизи изменяющейся во времени (по закону ) рабочей точки.

. (30)

В этом выражении первое слагаемое - ток, величина которого определяется только источником , а все остальные слагаемые - добавка к току зa счет действия источника малого сигнала . Очевидно, что первая производная тока - крутизна характеристики - функция напряжения (закон ее изменения во времени показан на правой части графика на рисунке 9). С учетом введения выражение (28) можно переписать в виде

. (31)

В общем случае, когда - чётная периодическая функция, ток и все коэффициенты ряда (29) , , , ... будут четными периодическими функциями, следовательно, их можно представить рядами Фурье, содержащими только косинусные слагаемые:

(32)

Если подставить все выражения (30) в (29) и выполнять элементарные (но очень громоздкие) преобразования, можно убедиться, что в спектре тока через НЭ будет присутствовать множество комбинационных составляющих, число которых не меньше, чем в (25). При этом амплитуды тока нелинейно будут зависеть от и . Таким образом, неизбежно возникают нелинейные искажения в выходном сигнале. В то же время эти искажения существенно меньше, чем при соизмеримых амплитудах воздействующих сигналов. Чтобы в этом убедиться, достаточно принять во внимание, что << l B, следовательно, все слагаемые в (29), начиная с третьего, являются малостями более высоких порядков и ими можно пренебречь без большой (с точки зрения инженерной практики) погрешности. Таким образом, учитывая справедливость неравенства

(33)

можно записать:

(34)

Из последнего выражения видно, что для колебания с малой амплитудой нелинейный элемент является линейным (т. к. выражение (32) - линейная функция ), но с переменным параметром - крутизной, которая изменяется во времени под воздействием большого напряжения :

Очевидно, что чем меньше амплитуда напряжения , тем меньше погрешность от замены (29) на (32), меньше количество и ниже уровень побочных (нежелательных) комбинационных составляющих в спектре выходного тока.

Если работа нелинейной цепи в этом случае происходит без отсечки тока НЭ, то ток через НЭ вообще не содержит комбинационных составляющих, приводящих к искажению выходного колебания (выходным колебанием считается ток на частоте ?1 + ?2 или |?1 - ?2|). В этом случае устройство на основе данной нелинейной цепи будет линейной параметрической системой.

Таким образом, для получения линейной параметрической цепи на основе НЭ необходимо выполнить ряд условий:

  • 1. Обеспечить работу с малым уровнем входного сигнала.
  • 2. Использовать фильтр на выходе цепи, выделяющий полезное колебание и эффективно подавляющий нежелательные продукты взаимодействия u1 и u2.
  • 3. Обеспечить соответствующий режим работы НЭ, при котором уменьшается уровень ненужных комбинационных составляющих.
  • 4. Подбирать НЭ с ВАХ, наиболее близкой по форме к квадратичной параболе.
 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

СКАЧАТЬ ОРИГИНАЛ
Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях