Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях

Аппроксимация степенными полиномами и кусочно-линейная

Она основана на использовании хорошо известных из курса высшей математики рядов Тейлора и Маклорена и заключается в разложении нелинейной ВАХ в бесконечномерный ряд, сходящийся в некоторой окрестности рабочей точки . Поскольку такой ряд физически не реализуем, приходится ограничивать число членов ряда, исходя из требуемой точности. Степенная аппроксимация применяется при относительно малом изменении амплитуды воздействия относительно .

Рассмотрим типичную форму ВАХ любого НЭ (рис. 1).

Напряжение определяет положение рабочей точки и, следовательно, статический режим работы НЭ.

Пример типичной ВАХ НЭ

Рис. 1. Пример типичной ВАХ НЭ

Обычно аппроксимируется не вся характеристика НЭ, а лишь рабочая область, размер которой определяется амплитудой входного сигнала, а положение на характеристике - величиной постоянного смещения . Аппроксимирующий полином записывается в виде

, (2)

где коэффициенты определяются выражениями

.

Аппроксимация степенным полиномом заключается в нахождении коэффициентов ряда . При заданной форме ВАХ эти коэффициенты существенно зависят от выбора рабочей точки , а также от ширины используемого участка характеристики. В этой связи целесообразно рассмотреть некоторые наиболее типичные и важные для практики случаи.

1. Рабочая точка расположена на середине линейного участка (рис. 2).

Рабочая точка ВАХ - на середине линейного участка

Рис. 2. Рабочая точка ВАХ - на середине линейного участка

Участок на характеристике, где закон изменения тока близок к линейному, относительно неширок, поэтому амплитуда входного напряжения не должна выходить за пределы этого участка. В этом случае можно записать:

, (3)

где - ток покоя;

;

- дифференциальная крутизна характеристики.

Этот случай применим только при слабом сигнале , поскольку в этом случае можно без большой погрешности пренебречь нелинейностью ВАХ.

2. Рабочая точка расположена на начальном участке характеристики.

Рис. 3. Рабочая точка ВАХ - на начальном участке характеристики

При небольшом изменении амплитуды входного сигнала относительно можно с малой погрешностью аппроксимировать ВАХ квадратичной параболой (степенным полиномом второго порядка). Аппроксимирующее выражение будет иметь вид

(4)

Как и в выражении (6.6), - ток покоя (постоянная составляющая выходного тока); - крутизна характеристики в точке . Для определения значений и необходимо составить систему уравнений:

(5)

Отсюда можно записать:

3. Рабочая точка является точкой перегиба характеристики (рис. 4).

Рис. 4. Рабочая точка ВАХ - точка перегиба

В точке перегиба все четные производные функции обращаются в нуль, поэтому в выражении (3) будут присутствовать только слагаемые с нечетными степенями , k = 1, 2, 3, … .

Напомним, что точка перегиба - точка кривой, в которой:

вогнутость (выпуклость) кривой меняется на выпуклость (вогнутость);

кривая "лежит" по разные стороны от касательной в этой точке.

В общем случае аппроксимирующий полином может быть любого, сколь угодно высокого порядка. Однако в большинстве практических случаев достаточную для инженерной практики точность дает полином третьей степени:

(6)

На рисунке 4 график, соответствующий (6), показан пунктирной линией. Рабочий участок ВАХ (динамический диапазон) определяется интервалом . На границах этого интервала производные аппроксимирующей функции обращаются в нуль. Для нахождения коэффициентов и необходимо, как и в предыдущем случае, составить систему уравнений и решить ее относительно и :

(7)

откуда

При очень больших амплитудах входного сигнала часто бывает удобнее заменять реальную характеристику идеализированной, составленной из отрезков прямых линий. Такое представление ВАХ называется кусочно-линейной аппроксимацией. На рисунке 5 показаны некоторые характерные примеры.

а б в

Рис. 5. Кусочно-линейная аппроксимация ВАХ

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
СКАЧАТЬ ОРИГИНАЛ
Аппроксимация характеристик нелинейных элементов и анализ цепей при гармонических воздействиях