Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow IP-телефония

Заземление

Требования к заземлению электрооборудования

Заземление телекоммуникационного оборудования должно выполняться с целью:

защиты персонала от поражения электрическим током при повреждении изоляции;

защиты оборудования от электростатических разрядов;

защиты оборудования от воздействия электромагнитных помех.

Стойки, металлические кронштейны с изоляторами, антенные устройства ТВ, а также металлические части шкафов, кроссов, пультов и другие металлоконструкции оборудования устройств связи должны быть заземлены.. Металлические шкафы, каркасы и другие металлоконструкции, на которых установлено электрооборудование напряжением выше 42В переменного тока, должны иметь защитное зануление путем соединения с нулевой жилой электрической сети напряжением 380/220 В.

Величина сопротивления заземления оборудования должна соответствовать ГОСТ 464-79. Сопротивление заземления в общей точке не должно превышать значения 2 Ом в любое время года.

Рабочее заземление оборудования связи, сигнализации и диспетчеризации следует выполнять согласно техническим требованиям на это оборудование.

Расчет защитного заземления

Исходные данные:

Все оборудование здания питается от трехфазной сети, напряжением 380В с изолированной нейтралью. Общая мощность источников питания сети превышает 100 кВА. Здание имеет железобетонный фундамент на глинистом грунте. Площадь, ограниченная периметром здания 852000м2.

Расчет:

Поскольку питающая сеть не превышает 1000В, имеет изолированную нейтраль и мощность источников питания более 100кВА, в качестве нормативного сопротивления заземления берем Rн = 4 Ом.

В качестве естественного заземлителя используем фундамент здания. Для нашего случая удельное сопротивление грунта (глина) rr = 40 Ом * м; коэффициенты сезонности, зависящие от климатической зоны СНГ Yв = 1,5 - 1,8 при расчете вертикальных электродов и Yг = 3,5 - 4,5 при расчете сопротивления горизонтальных электродов) принимаем равными: Yв = 1,65 Yг = 4.

Удельное электрическое сопротивление грунта в зоне размещения заземлителя определяется по формуле:

r = rr * Yг = 40 * 4 = 160 Ом * м

Сопротивление естественного заземлителя для железобетонного фундамента:

Re = 0,5 r--/--S1/2 = 0,5 *160/2001/2 = 5,66 Ом,

что превышает Rн = 4 Ом.

Следовательно необходим искусственный заземлитель, подключенный параллельно естественному, с допустимым сопротивлением:

Rн.доп. = Re * Rн /(Re - Rн) = 5б7 *4 /(5,7 - 4) = 13,4 Ом.

Искусственный заземлитель располагаем на пониженном и увлажненном участке территории предприятия на расстоянии 30 м от здания. Заземлитель выполняем как систему расположенных в ряд вертикальных электродов в виде стержней длиной l = 2,6м из угловой стали с шириной полки b = 0,05м, верхние концы которых лежат на глубине t0 = 0,7м и соединены полосой связи из стали, сечением 5 х 40мм.

Для вертикальных электродов, удельное сопротивление грунта в зоне размещения заземлителей:

r?= rв * Yв = 40 * 1,65 = 66 Ом * м

Сопротивление одиночного вертикального электрода определим:

Rэ = 0,366 * r????lg 2l/d + 0,5lg (4t+l)/(4t-l))--/--l = 20,32 Ом

где l>>d; t = 0,5l = t0; l, d соответственно длина и диаметр электрода;

для электрода из уголковой стали значение d = 0,95b.

Для определения количества вертикальных электродов n находим предварительно произведение коэффициента использования вертикальных электродов hэ?на их количество:

hэ?* n ?= Rэ /Rн.доп. = 1,52

Задавшись расстоянием a между электродами в виде соотношения a/l, находим n (для a/l = 2; n = 2).

Находим длину L горизонтального проводника, соединяющего вертикальные электроды. При расположении в ряд:

L = 1,05 * (n-1)* a? = 1,05*(2-1)*5,2 = 5,46м

при расположении по контуру,

L = 1,05 * n* a? = 1,05*2*5,2 = 10,92м

Сопротивление горизонтальной полосы при L>>4 t0 >>c,

Rn = (0,366 ??r???L)???lg 2L2/c* t0 = 17,39 Ом.

где с - ширина полосы, равная диаметру вертикального электрода.

При a/l = 2 и n = 2 находим hэ?=0,91 и hn?=0,94. Тогда результирующее сопротивление искусственного заземлителя:

Rи = Rэ * Rn /(Rэ * hэ + Rn * hn *n) = 6,96 Ом.

Полученное значение не превышает допустимого сопротивления

Rн.доп=13,4 Ом.

Поскольку искусственный заземлитель достаточно удален от естественного, можно пренебречь влиянием их полей растекания тока. Тогда общее сопротивление всего комплекса заземления, состоящего из естественного и искусственного заземлителей:

Rз = Rи * Rе /(Rи + Rе) = 3,12 Ом, что меньше Rн = 4 Ом.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

СКАЧАТЬ ОРИГИНАЛ
IP-телефония
Введение1. Эффективность и надежность работы сетевого комплекса1.1 Структурированные кабельные системы(СКС)1.2 Распределенные сети(WAN)1.3 Локальные сети (LAN)1.4 Технологии, применяемые в локальных сетях (LAN)1.4.1 Ethernet, Fast Ethernet, Gigabit Ethernet 1.4.2 Коммутация кадров1.5 Технологии, применяемые в территориально-распределенных сетях (WAN)1.5.1 Маршрутизация1.5.2 Технологии удаленного доступа к сети1.6 Универсальные технологии1.6.1 Системы управления оборудованием локальных вычислительных и глобальных сетей передачи данных1.6.2 ATM (Asynchronous Transfer Mode) 1.6.3 ISDN - Цифровая сеть с интеграцией услуг (Integrated Services Digital Network)1.6.4 ADSL - Асимметричная цифровая абонентская линия1.6.5 Технология V.90/56Kbs 1.6.6 IP-телефония1.6.7 Frame Relay1.7 Виртуальные частные сети1.8 Беспроводные сети2.1 IP-телефония2.1.1 Технология-феномен2.1.2 Перечень возможных предоставляемых услуг2.1.3 Преимущества IP-телефонии2.1.4 Качество связи2.1.5 Корпоративная телефония2.1.6 Программный продукт Internet-телефонии2.1.7 Стремление к стандарту2.1.8 Первые шаги IP-телефонии в России2.2 Метод анализа иерархий2.2.1 Основные теоретические сведения2.2.2 Содержание метода анализа иерархий2.2.3 Принципы идентичности и композиции2.2.4 Принципы сравнительных суждений2.2.5 Выбор системы методом иерархий2.3 Многофункциональная, удобная система бизнес-телефонии для развивающихся компаний и филиалов предприятий2.3.1 Ключевые преимущества и особенности системы2.3.2 Связь для малого офиса, филиала или сотрудников, работающих на дому2.3.3 Оборудование 3COM NBX1002.3.4 Программное обеспечение 3COM NBX1002.3.5 Система NBX® 1002.3.6 Спецификации2.4 Модем WATSON 4 MultiSpeed2.5 Параболическая антеннa Wire Grid для клиентских станций2.6 Всенаправленные антенны Mobile Mark для узлов доступа ( базовых станций )2.7 Расчет дальности беспроводных каналов диапазона 2,4 ГГц2.8 Рассчет пропускной способности глобальной сети3.1 Организация рабочего места оператора IP-телефонии3.1.1 Планировка рабочего места оператора связи3.2 Заземление3.2.1 Требования к заземлению электрооборудования3.2.2 Расчет защитного заземления 4. Организационно - экономический раздел5. Безопасность жизнедеятельности5.1 Экологическая экспертиза5.1.1 Основные источники загрязнения окружающей среды5.1.2 Нормативные содержания вредных веществ и микроклимата5.1.3 Нормирование параметров микроклимата5.2 Производственная безопасность5.2.1 Электромагнитное поле. Характеристики электромагнитного поля5.2.2 Вредное воздействие электромагнитных полей5.2.3 Нормирование электромагнитных полей5.2.4 Необходимые мероприятия по защите от воздействия электромагнитных полей5.2.5 Производственное освещение5.2.6 Основные светотехнические величины5.2.7 Обоснование системы освещения и типа светильников5.2.8 Расчет освещения5.2.9 Расчет эффективности защитного экрана5.3 Чрезвычайные ситуации5.3.1 Классификация и общие характеристики чрезвычайных ситуаций5.3.2 Основные положения теории ЧС5.3.3 Электробезопасность5.3.4 Противопожарная безопасностьЗаключениеСписок использованной литературы