Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow IP-телефония

Рассчет пропускной способности глобальной сети

Гилберт Хелд Гилберт Хелд - лектор и автор книг по информационным системам. Среди его последних работ - "Ethernet Networks: Design, Implementation, Operation, Management" и "Protecting LAN Resources: A Comprehensive Guide to Securing, Protecting and Rebuilding a Network" (обе эти книги вышли в издательстве John Wiley & Sons). С ним можно связаться через Internet по адресу: Этот адрес e-mail защищен от спам-ботов. Чтобы увидеть его, у Вас должен быть включен Java-Script .

В случае с вычислительными сетями известный постулат "время - деньги" звучит так: "скорость влетает в копеечку". Как рассчитать необходимую скорость канала связи, исходя из параметров локальной сети?

1. Сдвиг по фазе.

Информационная структура, где две локальные сети соединены между собой каналом связи глобальной сети, больше похожа на систему очередей другого типа, именуемого одноканальной двухфазной системой. На Рис. 1 показана схема соединения двух локальных сетей при помощи мостов или маршрутизаторов. Обратите внимание, что для передачи кадра данных от одной локальной сети к другой он должен быть обслужен двумя устройствами (в данном случае двумя мостами или двумя маршрутизаторами), поэтому такая схема может быть описана в рамках одноканальной многофазной модели. (Описание потока данных от одной локальной сети к другой в рамках одноканальной многофазной модели является математически корректным, однако так ли уж необходимо работать именно в рамках такой модели? Ответить на этот вопрос помогает анализ потока данных от одной сети к другой.)

Наиболее узкое место информационного потока между двумя удаленными друг от друга локальными сетями - канал связи глобальной сети, пропускная способность которого обычно существенно меньше скорости работы локальной сети.

Представим себе, что рабочая станция сети передает кадр данных в сеть Ethernet. Передаваемый кадр вначале "путешествует" из сегмента сети к мосту или маршрутизатору с той скоростью, на которой работает сеть (4 или 16 Мбит/с). Попав в маршрутизатор или мост, кадр копируется из сети в буфер устройства, преобразуется в другой формат, а затем (при наличии свободного канала) передается через глобальную сеть со скоростью, гораздо меньшей, чем та, с которой кадр передавался из локальной сети на устройство маршрутизации. Если непосредственно перед текущим кадром на сетевое устройство попал другой кадр, то нашему кадру придется подождать (в буфере), до тех пор пока предыдущий кадр не будет обслужен. Время обслуживания текущего кадра зависит от того, сколько кадров пришло на сетевое устройство непосредственно перед текущим: чем больше таких кадров, тем дольше время ожидания.

Рассмотрим теперь, как выполняется обслуживание кадра на противоположном конце канала глобальной сети. Поступая из глобальной сети на мост/маршрутизатор, кадр преобразуется к формату локальной сети и передается в локальную сеть. Поскольку скорость передачи информации по глобальной сети всегда ниже скоростей передачи кадров в локальной, никаких очередей при таком обслуживании не возникает, стало быть основной вклад во время обслуживания кадра на втором мосте/маршрутизаторе вносит само устройство. И это лишь малая доля от времени задержки кадров на первом мосте/маршрутизаторе. Отсюда следует, что для описания двухточечных линий связи между локальными сетями можно спокойно использовать одноканальную однофазную модель.

2. Применение тории массового обслуживания.

Используя математический аппарат теории массового обслуживания, можно вычислить зависимость времени передачи кадров от скорости работы глобальной сети без подключения к реальным каналам. Такие вычисления позволяют ответить на множество вопросов относительно производительности сети; благодаря им становится понятным, каково среднее время задержки кадров на мосте/маршрутизаторе, как может повлиять на величину этих задержек рост скорости работы канала связи глобальной сети и при каких условиях рост скорости обмена информацией по каналам глобальной сети не приводит к существенному увеличению производительности моста/маршрутизатора.

Пример расчета:

Число станций - 500.

Число транзакций (кадров) от одной станции - 700

Режим работы круглосуточный (24 часа). В час наибольшей нагрузки передается 20% от всего числа передаваемых кадров.

Размер кадра 80 байт.

Итого в час через HUB проходит:

При Гауссовском распределении N = 700 * 500 * 0.2 = 70000 кадров.

При нормальном распределении N = 700 * 500 / 24 = 14583,3 кадра.

Скорость поступления кадров получается делением полученных чисел на 3600:

При Гауссовском распределении 70000 / 3600 = 19,44 кадров в секунду.

При нормальном распределении 14583,3 / 3600 = 4,05 кадров в секунду.

Для подсчета скорости обслуживания следует задаться определенным значением скорости работы глобальной сети. При этом совершенно неважно, насколько близка к оптимальной взятая в качестве начального приближения скорость обмена информацией по глобальной сети, поскольку все вычисления легко повторить для другого значения скорости. Для начала примем скорость обмена информацией равной 64000 бит/с. Тогда время, необходимое для передачи одного кадра длиной 80 байт, составит 0,01 секунды.

Ожидаемое время обслуживания равно 0,01 секунды, откуда получаем, что средняя скорость обслуживания (величина, обратная к ожидаемому времени обслуживания) составляет 100 кадров в секунду.

Из расчетов видно, что скорость обслуживания выше чем скорость поступления кадров, то есть данный канал справляется приходящим трафиком.

Степень использования технических возможностей обслуживающего устройства (P) в одноканальной однофазной системе можно определить, поделив среднюю скорость поступления заказов на среднюю скорость обслуживания.

При Гауссовском распределении Р = 19,44 / 100 = 0,1944 = 19,44%.

При нормальном распределении Р = 4,05 / 100 = 0,0405 = 4,05%.

Зная степень использования обслуживающего устройства, довольно легко определить вероятность отсутствия заказов (обслуживаемых кадров) в данный момент времени. Эта вероятность, обозначенная нами как P0, равна единице минус степень использования канала (P0 = 1 - P).

При Гауссовском распределении Р0 = 1 - 0,1944 = 0,8066 = 80,66%.

При нормальном распределении Р0 = 1 - 0,0405 = 0,9595 = 95,95%.

Получив некоторые сведения относительно степени использования обслуживающего устройства, выясним теперь, каким образом кадры скапливаются в очередях и как влияют связанные с этими очередями задержки на процесс передачи кадров от одной локальной сети к другой.

В теории массового обслуживания среднее число объектов (unit) в системе обычно обозначается L, а среднее число объектов в очереди - Lq. Для одноканальной однофазной системы, L равняется средней скорости поступления заказов, деленной на разность между средней скоростью обслуживания и скоростью поступления заказов.

При Гауссовском распределении L = 19,44 / (100 - 19,44) = 0,2414.

При нормальном распределении L = 4,05 / (100 - 4,05) = 0,0422.

Таким образом, в буфере маршрутизатора и линии связи в любой момент находится чуть больше 4 - 24% одного кадра. Чтобы определить среднее число объектов в очереди (Lq), перемножим степень использования обслуживающего устройства (P) на число объектов в системе (L).

При Гауссовском распределении Lq = 0,2414 * 19,44 = 0,0469.

При нормальном распределении Lq = 0,0422 * 4,05 = 0,00171.

Теория массового обслуживания позволяет рассчитать среднее время нахождения объекта в системе (W) и среднее время ожидания в очереди (Wq).

Среднее время нахождения в системе представляет собой величину, обратную разнице между скоростью обслуживания и скоростью поступления заказов. Подставив числа из нашего примера, найдем, что в данном случае каждый кадр проводит в системе в среднем:

При Гауссовском распределении W = 1 / (100 - 19,44) = 0,0124с.

При нормальном распределении W = 1 / (100 - 4,05) = 0,0104с.

Очереди в системе можно охарактеризовать еще одним параметром, а именно временем ожидания. В нашем случае значение Wq равно произведению времени ожидания в системе на степень использования обслуживающего устройства. Таким образом, для нашей сети:

При Гауссовском распределении Wq = 0,0124 * 0,1944 = 0,00241с.

При нормальном распределении Wq = 0,0104 * 0,0405 = 0,00042с.

Проведем аналогичные расчеты для каналов различной пропускной способности для Гауссовского распределения.

Таблица №1 - Варьирование пропускной способности глобальной сети.

Скорость линии (бит/с)

19200

32000

64000

128000

256000

512000

Время передачи кадра, с

0,033333

0,02

0,01

0,005

0,0025

0,00125

Средняя скорость обслуживания

30

50

100

200

400

800

Степень использования канала

P

0,648148

0,3889

0,1944

0,097222

0,0486

0,02431

Вероятность отсутствия кадров в системе

P0 = 1 - P

0,351852

0,6111

0,8056

0,902778

0,9514

0,97569

Среднее число объектов (всего)

L

1,842105

0,6364

0,2414

0,107692

0,0511

0,02491

Среднее число объектов в очередях

Lq = L * P

1,193957

0,2475

0,0469

0,01047

0,0025

0,00061

Полное время ожидания

W

0,094737

0,0327

0,0124

0,005538

0,0026

0,00128

Время ожидания в очереди

Wq = W * P

0,061404

0,0127

0,0024

0,000538

0,0001

3,1E-05

Закономерное уменьшение выигрыша во времени ожидания по мере роста пропускной способности особенно хорошо видно при сравнении производительности глобальной сети для каналов с разной пропускной способностью. При увеличении пропускной способности канала связи выше четвертого уровня (128000 бит/с) вероятность отсутствия кадров в системе практически не растет.

Используя данный метод мы определили, что при Гауссовском распределении нагрузки на канал его скорость должна составлять 128 кбит/с. Время ожидания в очереди при этом составит 0,000538 сек, а время передачи по каналу связи в одну сторону - 0,005 сек. Степень использования канала 90%, а вероятность отсутствия кадров в системе - 10%. При этом в буфере обмена маршрутизатора в любой момент времени находится 0,5 % одного кадра.

Применительно к нашему варианту таблица варьирования пропускной способности глобальной сети выглядит следующим образом.

Занятие линии одним абонентом, часы

1

1

1

1

1

1

1

Cкорость кодирования голоса, бит/с

19800

19800

19800

19800

19800

19800

19800

Трафик от одного абонента в сутки, бит

71280000

71280000

71280000

71280000

71280000

71280000

71280000

Средняя длина кадра, бит

1200

1200

1200

1200

1200

1200

1200

Число кадров от одного абонента

59400

59400

59400

59400

59400

59400

59400

Число абонентов

18

18

18

18

18

18

18

Общее число кадров

1069200

1069200

1069200

1069200

1069200

1069200

1069200

Процент от общего числа звонков

50%

50%

50%

50%

50%

50%

50%

Скорость поступления кадров

148,5

148,5

148,5

148,5

148,5

148,5

148,5

Скорость линии (бит/с)

2048000

4096000

8192000

16384000

32768000

65536000

131072000

Время передачи кадра, с

0,0046875

0,0023438

0,0011719

0,0005859

0,000293

0,0001465

7,324E-05

Средняя скорость обслуживания

213,33333

426,66667

853,33333

1706,6667

3413,3333

6826,6667

13653,333

Степень использования канала

P

0,6960938

0,3480469

0,1740234

0,0870117

0,0435059

0,0217529

0,0108765

Вероятность отсутствия кадров в системе

P0 = 1 - P

0,3039063

0,6519531

0,8259766

0,9129883

0,9564941

0,9782471

0,9891235

Среднее число объектов (всего)

L

2,2904884

0,5338526

0,2106881

0,0953043

0,0454847

0,0222366

0,0109961

Среднее число объектов в очередях

Lq = L * P

1,5943947

0,1858057

0,0366647

0,0082926

0,0019789

0,0004837

0,0001196

Полное время ожидания

W

0,0154242

0,003595

0,0014188

0,0006418

0,0003063

0,0001497

7,405E-05

Время ожидания в очереди

Wq = W * P

0,0107367

0,0012512

0,0002469

5,584E-05

1,333E-05

3,257E-06

8,054E-07

Полное время ожидания и время ожидания в очереди.

Степень использования канала P вероятность отсутствия кадров в системе P0.

Используя данный метод мы определили, что при Гауссовском распределении нагрузки на канал его скорость должна составлять 2048 кбит/с. Время ожидания в очереди при этом составит 0,0107367 сек, а время передачи по каналу связи в одну сторону - 0,0046875 сек. Степень использования канала 70%, а вероятность отсутствия кадров в системе - 30%.

3. Технологическая часть

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

СКАЧАТЬ ОРИГИНАЛ
IP-телефония
Введение1. Эффективность и надежность работы сетевого комплекса1.1 Структурированные кабельные системы(СКС)1.2 Распределенные сети(WAN)1.3 Локальные сети (LAN)1.4 Технологии, применяемые в локальных сетях (LAN)1.4.1 Ethernet, Fast Ethernet, Gigabit Ethernet 1.4.2 Коммутация кадров1.5 Технологии, применяемые в территориально-распределенных сетях (WAN)1.5.1 Маршрутизация1.5.2 Технологии удаленного доступа к сети1.6 Универсальные технологии1.6.1 Системы управления оборудованием локальных вычислительных и глобальных сетей передачи данных1.6.2 ATM (Asynchronous Transfer Mode) 1.6.3 ISDN - Цифровая сеть с интеграцией услуг (Integrated Services Digital Network)1.6.4 ADSL - Асимметричная цифровая абонентская линия1.6.5 Технология V.90/56Kbs 1.6.6 IP-телефония1.6.7 Frame Relay1.7 Виртуальные частные сети1.8 Беспроводные сети2.1 IP-телефония2.1.1 Технология-феномен2.1.2 Перечень возможных предоставляемых услуг2.1.3 Преимущества IP-телефонии2.1.4 Качество связи2.1.5 Корпоративная телефония2.1.6 Программный продукт Internet-телефонии2.1.7 Стремление к стандарту2.1.8 Первые шаги IP-телефонии в России2.2 Метод анализа иерархий2.2.1 Основные теоретические сведения2.2.2 Содержание метода анализа иерархий2.2.3 Принципы идентичности и композиции2.2.4 Принципы сравнительных суждений2.2.5 Выбор системы методом иерархий2.3 Многофункциональная, удобная система бизнес-телефонии для развивающихся компаний и филиалов предприятий2.3.1 Ключевые преимущества и особенности системы2.3.2 Связь для малого офиса, филиала или сотрудников, работающих на дому2.3.3 Оборудование 3COM NBX1002.3.4 Программное обеспечение 3COM NBX1002.3.5 Система NBX® 1002.3.6 Спецификации2.4 Модем WATSON 4 MultiSpeed2.5 Параболическая антеннa Wire Grid для клиентских станций2.6 Всенаправленные антенны Mobile Mark для узлов доступа ( базовых станций )2.7 Расчет дальности беспроводных каналов диапазона 2,4 ГГц2.8 Рассчет пропускной способности глобальной сети3.1 Организация рабочего места оператора IP-телефонии3.1.1 Планировка рабочего места оператора связи3.2 Заземление3.2.1 Требования к заземлению электрооборудования3.2.2 Расчет защитного заземления 4. Организационно - экономический раздел5. Безопасность жизнедеятельности5.1 Экологическая экспертиза5.1.1 Основные источники загрязнения окружающей среды5.1.2 Нормативные содержания вредных веществ и микроклимата5.1.3 Нормирование параметров микроклимата5.2 Производственная безопасность5.2.1 Электромагнитное поле. Характеристики электромагнитного поля5.2.2 Вредное воздействие электромагнитных полей5.2.3 Нормирование электромагнитных полей5.2.4 Необходимые мероприятия по защите от воздействия электромагнитных полей5.2.5 Производственное освещение5.2.6 Основные светотехнические величины5.2.7 Обоснование системы освещения и типа светильников5.2.8 Расчет освещения5.2.9 Расчет эффективности защитного экрана5.3 Чрезвычайные ситуации5.3.1 Классификация и общие характеристики чрезвычайных ситуаций5.3.2 Основные положения теории ЧС5.3.3 Электробезопасность5.3.4 Противопожарная безопасностьЗаключениеСписок использованной литературы