Меню
Главная
Авторизация/Регистрация
 
Главная arrow Техника arrow IP-телефония

Принципы идентичности и композиции

Это принцип предусматривает структурирование проблемы (системное представление) в виде иерархии. В наиболее простом виде иерархия строится из вершины через промежуточные уровни к самому низкому уровню, которым обычно является перечень альтернатив (возможных вариантов изделия или его частей).

Иерархия считается полной, если каждый элемент заданного уровня действует как критерий для всех элементов нижестоящего уровня. В противном случае, иерархия - неполная.

Законы иерархической непрерывности требуют, чтобы элементы нижнего уровня иерархии были попарно сравнимы по отношению к элементам следующего уровня.

Принципы сравнительных суждений

После формирования системы критериев в виде иерархии возникают естественные вопросы установки приоритетов критериев и оценки альтернатив по этому критерию с целью выявления самой важной из них.

Наиболее целесообразно организовать парные сравнения по отношению к их воздействию, а результаты сравнений представить в матричной форме в виде квадратной матрицы.

А1

А1

А1

А1

A

B

C

D

А1

W1/W1

W1/W2

W1/W3

W1/W4

A

а11

a12

a13

a14

А2

W2/W1

W2/W2

W2/W3

W2/W4

=

B

a21

a22

a23

a24

А3

W3/W1

W3/W2

W3/W3

W3/W4

С

a31

a32

a33

a34

А4

W4/W1

W4/W2

W4/W3

W4/W4

D

a41

a42

a43

a44

Эта матрица будет иметь свойства обратно симметричной матрицы, т.е.:

,

где индексы i и j относятся к строке и столбцу соответственно.

Строки и столбцы образуют «вектор» матрицы. Квадратная матрица характеризуется собственным вектором и собственными значениями, способ вычисления этих характеристик определяет способ количественного определения сравнительной важности критериев.

Так как а11, a12, ...,aij неизвестны заранее, то попарные сравнения элементов производятся с использованием субъективных суждений и численного оценивания по шкале важности.

Результаты сравнения заносятся в матрицу, строки и столбцы которой образуют альтернативы сравниваемых между собой элементов. На основе данных заполненной таблицы формируется набор локальных приоритетов, которые выражают относительное влияние критериев качества на выбор лучшего объекта сравнения, для этого организуется вычисления собственных векторов матрицы, а затем нормализуются результаты к единице, получая тем самым искомый вектор приоритетов, который и расставляет сравниваемые объекты по значимости. Для вычисления собственных векторов существует множество приемов. Одним из наилучших является нахождение геометрического среднего. Это получается при перемножении элементов в каждой строке и извлечением из произведения корня N-й степени, где N - количество элементов. Полученный таким. способом столбец нормализуется делением каждого числа на сумму всех чисел:

Матрица

Вычисление оценок компонент собственного вектора по строкам

Нормализация для получения оценок вектора приоритетов

N

A1

A2

A3

A4

A1

W1

W1

W1

W2

W1

W3

W1

W4

Теперь сложите элементы столбца и нормализуйте

A2

W2

W1

W2

W2

W2

W3

W2

W4

A3

W3

W1

W3

W2

W3

W3

W3

W4

A4

W4

W1

W4

W2

W4

W3

W4

W4

Сумма (a:d)

Процесс выбора лучшего изделия зависит от способа формирования системы критериев, и ограничений, налагаемых на их выбор. Критерии могут быть по значимости равнозначны, неравнозначны, образовывать многоуровневую разветвленную. структуру - иерархию.

В простейшем случае критерии можно считать равными по своей значимости и тогда выбор лучшего (предпочтительного варианта) находится согласно алгоритму :

Алгоритм выбора лучшего изделия по равнозначным критериям

Рисунок 1. Алгоритм выбора лучшего изделия по равнозначным критериям.

Здесь:

Если критерии неравнозначны, то предварительно.определяют приоритеты критериев R[K]. Затем вычисляются глобальные приоритеты X[K, N], а глобальные приоритеты сравниваемых объектов определяются путем перемножения матриц

|Y[N]| = |X[K,N]|*|R[K]| ,-или в развернутой форме

Блок-схема, алгоритма приведена на рис.2:

Алгоритм выбора лучшего изделия по неравнозначным критериям

Рисунок 2. Алгоритм выбора лучшего изделия по неравнозначным критериям

Если критерии представляют многоуровневую иерархическую структуру, то в этом случае на каждом уровне организуется процесс ранжирования критериев данного уровня и нахождение соответствующих локальных приоритетов объектов сравнения.

Для проведения парных сравнений объектов анализа используется шкала относительной важности,, показанная в таблице 2.

Оценки начинают с левого верхнего элемента матрицы и задаются вопросы следующего вида.

Какой из объектов важнее (лучше)?

Какой из них предпочтительнее?

Какое решение более очевидно?

При сравнении элемента с самим собой отношение равно единице. Если первый объект важнее, чем второй, то используется целое число из шкалы табл.2. В любом случае обратные друг к другу отношения заносятся в симметричные позиции матрицы. Поэтому в результате проведения рассмотренных сравнений образуется положительная обратносимметричная матрица и нужно произвести (N-1)*N/2 суждений, где N - общее число сравниваемых объектов.

Интенсивность относительной важности

Определение

Объяснение

1

Равная важность

Равный вклад двух видов дея-тельности в цель

3

Умеренное превосходство одного над другим

Опыт и суждения дают легкое превосходство одному виду деятельности над другим

5

Существенное, или сильное превосходство

7

Значительное превосходство

Одному виду деятельности дается настолько сильное превосходство, что оно становится практически значительным

9

Очень сильное превосходство

Очевидное превосходство одного вида деятельности над другими подтверждается наиболее сильно

2;4;6;8;

Промежуточные решения между двумя соседними суждениями

Применяется в компромиссных случаях

Обратные величины приведенных выше чисел

Если при сравнении одного вида деятельности с другим получено одно из выше указанных чисел (например, 5), то при сравнении второго вида деятельности с первым получим обратную величину (т.е. 0,2)

Поскольку оценки сделаны в результате субъективных суждений, т.е.. баллы назначаются самим проектировщиком в соответствии с его вкусами и внутренними убеждениями, существует необходимость сделать проверку согласованности оценок.

Для того вычисляется индекс согласованности (ИС), который характеризует нарушение этой согласованности.

В основе такой операции лежит довод о том, что все измерения, в которых используются приборы, содержат погрешности измерений. Они связаны прежде всего с неточностью измерительных приборов и неточностями самих измерений. Эти погрешности и приводят к несогласованности результатов. На пример, при взвешивании оказалось, что предмет -А тяжелее, чем предмет Б, Б тяжелее B, а В тяжелее А. Это возможно, когда веса А, Б, В близки, а точность прибора соизмерима с разницей их весов.

Способ оценки согласованности при решении данных задач заключается в следующем:

  • 1. Суммируем каждый столбец суждений Si;
  • 2. Сумма первого столбца умножается на величину первой компоненты нормализованного вектора приоритетов Xi

Zi=Si*Xi;

  • 3. Суммируются полученные числа,:
  • 4. Находится индекс согласованности по формуле

Для обратносимметричной матрицы всегда maxN.

Теперь необходимо сравнить , с той, которая могла быть получена при случайном выборе суждений из списка 1/9, 1/8, 1/7 ... 1, 2, 3, … , 9 при формировании обратносимметричной матрицы. Средние данные согласованности для случайной матрицы разного порядка приведены в таблице:

Размер матрицы N

Случайная согласованность г

0

0

0,58

0,9

1,12

1,24

1,32

1,41

Размер матрицы N

9

10

11

12

13

14

15

16

Случайная согласованность г

1,45

1,49

1,51

1,54

1,56

1,57

1,59

1,60

Если разделить индекс согласованности на число г, соответствующее случайной согласованности матрицы того же порядка у то получим отношение согласованностей

=/.

На накладываются условия:

Если > 0,2 то нужно исследовать задачу снова и проверить суждения.

Критерии для сравнения выбранных систем

Рисунок 3. Критерии для сравнения выбранных систем.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 
СКАЧАТЬ ОРИГИНАЛ
IP-телефония
Введение1. Эффективность и надежность работы сетевого комплекса1.1 Структурированные кабельные системы(СКС)1.2 Распределенные сети(WAN)1.3 Локальные сети (LAN)1.4 Технологии, применяемые в локальных сетях (LAN)1.4.1 Ethernet, Fast Ethernet, Gigabit Ethernet 1.4.2 Коммутация кадров1.5 Технологии, применяемые в территориально-распределенных сетях (WAN)1.5.1 Маршрутизация1.5.2 Технологии удаленного доступа к сети1.6 Универсальные технологии1.6.1 Системы управления оборудованием локальных вычислительных и глобальных сетей передачи данных1.6.2 ATM (Asynchronous Transfer Mode) 1.6.3 ISDN - Цифровая сеть с интеграцией услуг (Integrated Services Digital Network)1.6.4 ADSL - Асимметричная цифровая абонентская линия1.6.5 Технология V.90/56Kbs 1.6.6 IP-телефония1.6.7 Frame Relay1.7 Виртуальные частные сети1.8 Беспроводные сети2.1 IP-телефония2.1.1 Технология-феномен2.1.2 Перечень возможных предоставляемых услуг2.1.3 Преимущества IP-телефонии2.1.4 Качество связи2.1.5 Корпоративная телефония2.1.6 Программный продукт Internet-телефонии2.1.7 Стремление к стандарту2.1.8 Первые шаги IP-телефонии в России2.2 Метод анализа иерархий2.2.1 Основные теоретические сведения2.2.2 Содержание метода анализа иерархий2.2.3 Принципы идентичности и композиции2.2.4 Принципы сравнительных суждений2.2.5 Выбор системы методом иерархий2.3 Многофункциональная, удобная система бизнес-телефонии для развивающихся компаний и филиалов предприятий2.3.1 Ключевые преимущества и особенности системы2.3.2 Связь для малого офиса, филиала или сотрудников, работающих на дому2.3.3 Оборудование 3COM NBX1002.3.4 Программное обеспечение 3COM NBX1002.3.5 Система NBX® 1002.3.6 Спецификации2.4 Модем WATSON 4 MultiSpeed2.5 Параболическая антеннa Wire Grid для клиентских станций2.6 Всенаправленные антенны Mobile Mark для узлов доступа ( базовых станций )2.7 Расчет дальности беспроводных каналов диапазона 2,4 ГГц2.8 Рассчет пропускной способности глобальной сети3.1 Организация рабочего места оператора IP-телефонии3.1.1 Планировка рабочего места оператора связи3.2 Заземление3.2.1 Требования к заземлению электрооборудования3.2.2 Расчет защитного заземления 4. Организационно - экономический раздел5. Безопасность жизнедеятельности5.1 Экологическая экспертиза5.1.1 Основные источники загрязнения окружающей среды5.1.2 Нормативные содержания вредных веществ и микроклимата5.1.3 Нормирование параметров микроклимата5.2 Производственная безопасность5.2.1 Электромагнитное поле. Характеристики электромагнитного поля5.2.2 Вредное воздействие электромагнитных полей5.2.3 Нормирование электромагнитных полей5.2.4 Необходимые мероприятия по защите от воздействия электромагнитных полей5.2.5 Производственное освещение5.2.6 Основные светотехнические величины5.2.7 Обоснование системы освещения и типа светильников5.2.8 Расчет освещения5.2.9 Расчет эффективности защитного экрана5.3 Чрезвычайные ситуации5.3.1 Классификация и общие характеристики чрезвычайных ситуаций5.3.2 Основные положения теории ЧС5.3.3 Электробезопасность5.3.4 Противопожарная безопасностьЗаключениеСписок использованной литературы