Меню
Главная
Авторизация/Регистрация
 
Главная arrow Экология arrow Общая экология

Главные этапы биохимической эволюции живых организмов

Современная биосфера возникла не сразу, а в результате длительной эволюции в процессе постоянного взаимодействия внешних (аллогенных) - геологических и климатических и внутренних (автогенных) - обусловленных живым компонентом, т.е. абиотических и биотических факторов. Благодаря действию и взаимодействию этих факторов сформировалось биологическое разнообразие на внутривидовом, межвидовом и биосферном уровнях. Именно разнообразие экосистем, составляющих биосферу является условием ее устойчивости.

Данные космохимии метеоритов и астероидов свидетельствуют о том, что образование органических соединений в Солнечной системе на ранних стадиях ее развития было типичным и массовым явлением (Войткевич, Вронский, 1996).

Первые формы жизни, по-видимому, были представлены анаэробными бактериями, образовавшимися из органических веществ, синтезированных абиогенно под действием мощного ультрафиолетового излучения в отсутствии кислорода (и озонового слоя). Они могли существовать только в воде, защищающей простейших от ультрафиолетового излучения. Питались они, по-видимому, органическими веществами, образованными космическим синтезом. Таким образом, древнейшая биосфера возникла в гидросфере, существовала в ее пределах и являлась гетеротрофной. Под воздействием закона «всюдности жизни» организмы стали осуществлять экспансию в различные области обитания. Однако созидающая и преобразующая роль живого вещества стала осуществляться лишь с появлением в биосфере фотосинтезирующих автотрофов - цианобактерий и синезеленых (прокариотов) около 3,5 млрд. лет назад. 1,5 - 2 млрд. лет назад произошел мощный популяционный взрыв автотрофных водорослей, что привело к избытку в воде кислорода и выделению его в атмосферу. Произошел переход восстановительной атмосферы в кислородную, что способствовало развитию эукариотических организмов и появлению многоклеточности около 1,4 млрд. лет назад, а затем и настоящих водорослей и наземных растений (эукариотов). Это имело решающее значение для формирования современной биосферы. Деятельность автотрофных организмов привела к накоплению в биосфере свободного кислорода, что рассматривается как один из важнейших этапов эволюции.

В начале кембрийского периода, примерно 600 млн. лет назад, содержание кислорода в атмосфере достигло 0,6%, а затем произошел еще один эволюционный взрыв - появились новые формы жизни - губки, кораллы, черви, моллюски. Уже к середине палеозоя содержание кислорода впервые стало близко к современному. Появилась возможность выхода жизни на сушу. Несмотря на обилие автотрофов, в конце палеозоя, примерно 300 млн. лет назад, содержание кислорода в атмосфере упало до 5% от современного и повысилось содержание углекислого газа. Это привело к изменению климата, снижению интенсивности процессов размножения животных, и как следствие бурному накоплению массы органических веществ, сто создало запасы ископаемого топлива (каменный уголь, нефть). Затем содержание кислорода снова стало повышаться и с середины мелового периода, примерно 100 млн. лет назад, отношение О2/СО2 близко к современному, хоть и испытывает колебания в определенных пределах.

Дальнейшее развитие животных и растений, после выхода на сушу, привело к заселению материков, возникновению таких крупных наземных животных, как динозавры, появлению млекопитающих и, наконец, человека.

В.И. Вернадский сформулировал идеи эволюции биосферы следующим образом:

Вначале сформировалась литосфера - предвестник окружающей среды, а затем после появления жизни на суше - биосфера.

В течение всей геологический истории Земли никогда не наблюдались азойные геологические эпохи (т.е. лишенные жизни). Следовательно, современное живое вещество генетически связано с живым веществом прошлых геологических эпох.

Живые организмы - главный фактор миграции химических элементов в земной коре, «по крайней мере, 90% по весу массы ее вещества в своих существенных чертах обусловлено жизнью» (Вернадский 1934г).

Грандиозный геологический эффект деятельности организмов обусловлен тем, что их количество бесконечно велико и действуют они практически в течение бесконечно большого промежутка времени.

Таким образом, основным движущим фактором развития процессов в биосфере является биохимическая энергия живого вещества. Ю. Одум (1975) считает, что «с экологической точки зрения эволюцию биосферы, по-видимому, можно сравнить с гетеротрофной сукцессией, за которой последовал автотрофный режим». Но до сих пор, несмотря на 4 млрд. лет эволюции, таксономический состав систем еще не стабилизировался. Биоразнообразие экосферы продолжает совершенствоваться за счет большого резерва в эволюции сообществ. На этом уровне ведущая роль принадлежит сопряженной эволюции (коэволюции) и групповому отбору.

Эволюция биосферы и ее основных составляющих. (по Ф. Рамаду, 1981)

Время, число лет

Геологическая эпоха

Биосфера

Литосфера

Гидросфера

Атмосфера

  • 5х109
  • 4,5х109

Ранний архей

Формирование Солнечной системы.

Наиболее древние породы

Конденсация океана

Свободный кислород отсутствует

  • 3х109
  • 2х109

Докембрий

Первые бактерии

Первые организмы, способные к фотосинтезу

Вулканизм

Появление кислорода из оксидов железа

Содержание кислорода составляет 1% современного значения.

Образование озонового слоя

  • 7х108
  • 5х108 - 2,25х 108

Палеозойская эра

Появление многоклеточных

Появление сосудистых растений и насекомых

Оледенение Сахары. Образование каменноугольных отложений

Увеличение объема океана

Содержание кислорода составляет 3 - 10% от современного

108 - 7х107

Мезозойская эра

Появление млекопитающих

Появление покрытосеменных растений

Вулканизм

Отложение мела и гипса в осадочных породах

Содержание кислорода увеличивается

  • 5х107
  • 2х107
  • 107
  • 106

Кайнозойская эра

Эоцен

Олигоцен

Миоцен

Плиоцен

Четвертичный период

Появление злаковых

Увеличение видового разнообразия млекопитающих. Первые приматы по линии антропоидов.

Первый из известных человекообразн.

Оледенение

Образование бурого угля. Вулканизм

Уровень моря на 120 м ниже современного

Процентное содержание кислорода близко к современному

Содержание кислорода близко к современному.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

СКАЧАТЬ ОРИГИНАЛ
Общая экология
1. ФАКТОРИАЛЬНАЯ ЭКОЛОГИЯ1.1 Предмет и объекты изучения экологии1.1.1 Экология и история ее развития. Место экологии в системе естественных и социальных наук. Методы экологических исследований1.1.2 Современное состояние экологии как комплекной социально-естественной науки о взвамоотношениях организмов. Содержание, предмет, объект и задачи экологии1.2 Основы аутэкологии (факториальной экологии)1.2.1 Организм и среда1.2.2 Экологические факторы среды и их классификация1.2.4 Приспособление организмов к неблагоприятным условиям среды1.2.5 Основные абиотические факторы1.2.6 Основные биотические факторы1.3 Среды жизни. Приспособление организмов к среде жизни1.3.1 Среды обитания и их влияние на живые организмы1.3.2 Наземно-воздушная среда жизни и ее особенности. Адаптации организмов к обитанию в наземно-воздушной среде1.3.3 Водная среда жизни. Адаптации организмов к водной среде1.3.4 Почвенная среда жизни. Почвенные организмы1.3.5 Живой организм как особая среда обитания. Средообразующая роль живых организмов1.4 Основы демэкологии (экологии популяций)1.4.1 Вид и его экологическая характеристика1.4.2 Популяция как форма существования вида1.4.3 Показатели популяций1.4.4 Возрастная и половая структуры популяций1.4.5 Пространственная и этологическая структуры популяций1.4.6 Динамика популяций1.5 Основы синэкологии (экологии сообществ и экосистем)1.5.1 Экосистемы и принципы их функционирования1.5.2 Биоценозы (сообщества), их таксономический состав и функциональная структура1.5.3 Структура биоценоза 1.5.4 Внутривидовые взаимодействия в биоценозе. Межвидовые взаимоотношения в биоценозе1.5.5 Экологические ниши. Многомерность ниши. Ниша фундаментальная и реализованная. Влияние конкуренции на ширину экологической ниши. Прерывание ниш. Ниши общие и специализированные1.5.6 Устойчивость и развитие биоценозов1.5.7 Экосистемы и принципы их функционирования1.5.8 Потоки вещества и энергии в экосистеме. Биологическая продуктивность экосистем1.5.9 Динамика экосистем. Саморегуляция и устойчивость экосистем1.5.10 Искусственные экосистемы2. БИОСФЕРА ИСТОРИЯ ЕЕ СТАНОВЛЕНИЯ, РАЗВИТИЯ И СОВРЕМЕННОЕ СОСТОЯНИЕ2.1 Основы учения о биосфере2.1.1 Определение понятия «биосфера»2.2.2 Строение оболочек Земли, их структура, зональность, динамика2.2.3 Роль В.И. Вернадского в формировании современного учения о биосфере2.2.4 Живое и биокосное вещество, их взаимовозникновение и перерождение в круговоротах веществ и энергии2.2.5 Биотические процессы в биосфере2.2.6 Круговороты биогенных элементов и их модификация2.2.7 Круговороты газообразного и осадочного циклов2.2.8 Кругообороты воды, углерода, азота, фосфора и серы2.2.9 Основные теории происхождения биосферы2.2.10 Биохимическая эволюция живых организмов2.2.11 Главные этапы биохимической эволюции живых организмов2.2.12 Основные тенденции эволюции биосферы. Роль человека в эволюции биосферы. Ноосфера. Учение В.И. Вернадского о ноосфере3. ГЛОБАЛЬНЫЕ, РЕГИОНАЛЬНЫЕ И ЛОКАЛЬНЫЕ ПРОБЛЕМЫ БИОСФЕРЫ3.1 Антропогенное воздействие на биосферу и его последствия3.1.1 Антропогенез3.1.2 Расогенез3.1.3 Коэволюционный характер развития пррироды и общества на современном этапа развития биосферы3.1.4 Экологические кризисы и катастрофы в истории человечества3.1.5 Понятие о риске. Природные и техногенные чрезвычайные ситуации3.1.6 Масштабы антропогенного воздействия на биосферу. Ответные реакции природы3.1.7 Антропогенное влияние и глобальные проблемы современной биосферы. Понятие загрязнения природной среды. Источники загрязнения биосферы. Загрязнение природных вод, атмосферы, почвы3.1.8 Радиоактивное загрязнение