Меню
Главная
Авторизация/Регистрация
 
Главная arrow Прочее arrow Теории происхождения Вселенной

Большой взрыв и краткая история Вселенной

Первые секунды после Большого взрыва

После загадочной космологической сингулярности следует не менее таинственная планковская эра (0 -10 -43 с). Трудно сказать какие процессы происходили в этот краткий миг новорождённой Вселенной. Но точно известно, что к концу планковского момента гравитационное воздействие отделилось от трёх фундаментальных сил, соединенных в единую группу Великого объединения.

Для того, чтобы описать более ранний момент, необходима новая теория, частью которой может стать модель петлевой квантовой гравитации и теория струн. Получается, что планковская эра, как и космологическая сингулярность, составляет сверхмалый по длительности, но значительный по научному весу пробел в доступных знаниях ранней Вселенной. Так же в пределах планковского времени существовали своеобразные флуктации пространства и времени. Для описания этого квантового хаоса можно использовать образ пенящихся квантовых ячеек пространства-времени.

По сравнению с планковской эрой дальнейшие события предстают перед нами в ярком и понятном свете. В период с 10 -43 с до 10-35 с в молодой Вселенной уже действовали силы гравитации и Великого объединения. В этот период сильное, слабое и электромагнитное воздействия были единым целым и составляли силовое поле Великого объединения.

Когда с момента Большого взрыва прошло 10-35 с, Вселенная достигла температуры 1029 К. В этот момент сильное взаимодействие отделилось от электрослабого. Это привело к нарушению симметрии, которое происходило по-разному в разных частях Вселенной. Есть вероятность, что Вселенная разделилась на части, которые были отгорожены друг от друга дефектами пространства-времени. Так же там могли существовать и другие дефекты - космические струны или магнитные монополи. Однако, сегодня мы не можем этого видеть из-за другого разделения силы Великого объединения - космологической инфляции.

В то время Вселенная была заполнена газом из гравитонов - гипотетических квантов поля тяготения и бозонов силы Большого объединения. В это же время почти не существовала разница между лептонами и кварками.

Когда в некоторых частях Вселенной произошло разделение сил, возник ложный вакуум. Энергия застряла на высоком уровне, вынуждая пространство удваиваться каждые 10-34 с. Таким образом, Вселенная от квантовых масштабов( одна миллиардная триллионной триллионной доли сантиметра) перешла к размерам шара с диаметром около 10 см. В результате эпохи Великого объединения произошёл фазовый переход первичной материи, который сопровождался нарушением однородности её плотности. Эпоха Великого объединения закончилась приблизительно в 10?34 секунд с момента Большого Взрыва, когда плотность материи составляла 1074 г/смі, а температура 1027 K. В этот момент времени от первичного взаимодействия отделяется сильное ядерное взаимодействие, которое начинает играть важную роль в создавшихся условиях. Это отделение привело к следующему фазовому переходу и масштабному расширению Вселенной, которое привело к изменению плотности вещества и распределению его по Вселенной.

Одна из причин, почему мы так мало знаем о состоянии Вселенной до инфляции, заключается в том, что дальнейшие события очень сильно её изменили, разбросав частицы до инфляционного возраста по самым дальним уголкам Вселенной. Поэтому, даже если эти частицы и сохранились, обнаружить их в современном веществе достаточно сложно.

С быстрым развитием Вселенной происходят большие изменения, и в след за периодом Великого объединения идёт эпоха инфляции (10-35 - 10-32). Для этой эпохи характерно сверхбыстрое расширения молодой Вселенной, то есть инфляция. В этот краткий миг Мироздание представляло собой океан ложного вакуума с высокой плотностью энергии, благодаря чему и стало возможно расширение. При этом параметры вакуума постоянно менялись из-за квантовых всплесков - флуктации (пространство-временное вспенивание).

Инфляция объясняет природу взрыва при Большом взрыве, то есть почему происходило стремительное расширение Вселенной. Основой для описания этого явления послужили общая теория относительности Эйнштейна и квантовая теория поля. Для того, что описать это явление, физики построили гипотетическое инфлаторное поле, которое заполняло всё пространство. Благодаря случайным колебаниям оно принимало разные значения в произвольных пространственных областях и в разные моменты времени. Затем в инфлаторном поле образовалась однородная конфигурация критического размера, после чего пространственная область, занятая флуктацией, начала быстро увеличиваться в размерах. Из-за стремления инфлаторного поля занять положение, в котором его энергия минимальна, процесс расширения обрёл нарастающий характер, в результате которого Вселенная начала увеличиваться в размерах. В момент расширения(10-34) начал распадаться ложный вакуум, в результате чего начинают образоваться частицы и античастицы больших энергий.

В истории Вселенной наступает адронная эра, важной особенностью которой является существования частиц и античастиц. Согласно современным представлениям в первые микросекунды после Большого взрыва, Вселенная находилась в состоянии кварк-глюонной плазмы. Кварки являются составными частями всех адронов (протонов и нейтронов), а нейтральные частицы глюоны-переносчики сильного взаимодействия, которые обеспечивают слипание кварков в адроны. В первые моменты Вселенной эти частицы только образовывались и находились в свободном, газообразном, состоянии.

Хромоплазму кварков и глюонов обычно сравнивают с жидким состоянием взаимодействующей материи. В такой фазе кварки и глюоны освобождаются от адронной материи и могут свободно перемещаться по всему плазменному пространству, в результате чего образуется цветопроводность.

Не смотря на экстремально высокие температуры, кварки были достаточно связаны между собой, а их движение напоминало скорее движение атомов в жидкости, чем в газе. Так же при таких условиях происходит ещё один фазовый переход, при котором лёгкие кварки, составляющие вещество, становятся безмассовыми.

Наблюдения реликтового фона показали, что первоначальное изобилие частиц по сравнению с количеством античастиц составляло ничтожно малую долю от общего числа. И именно этих избыточных протонов хватило для создания вещества Вселенной.

Некоторые учёные полагают, что в адронной эре существовали и скрытие вещества. Носитель скрытой массы неизвестен, но наиболее вероятными считаются такие элементарные частицы как аксионы.

В процессе развития взрыва температура падала и через одну десятую секунды достигала 3*1010 градусов Цельсия. Через одну секунду - десять тысяч миллионов градусов, а через тринадцать секунд- три тысячи миллионов. Этого было уже достаточно для того, чтобы электроны и позитроны начали аннагилировать быстрее. Энергия, выделяющаяся при аннагиляции, постепенно замедляла скорость охлаждения Вселенной, но температура продолжала падать.

Период с 10-4 - 10 с принято называть эрой лептонов. Когда энергия частиц и фотонов понизилась в сотню раз, вещество заполнили лептоны-электроны и позитроны. Лептонная эра начинается с распада последних адронов в мюоны и мюонное нейтрино, а кончается через несколько секунд, когда энергия фотонов резко уменьшилась и генерация электрон-позитронных пар прекратилась.

Примерно через одну сотую секунды после Большого взрыва температура Вселенной была равна 10 11 градусов Цельсия. Это намного горячее, чем в центре любой известной нам звезды. Эта температура так высока, что ни один из компонентов обычного вещества, атомы и молекулы, не могли существовать. Вместо этого молодая Вселенная состояла из элементарных частиц. Одними из этих частиц были электроны, - отрицательно заряженные частицы, которые образую внешние части всех атомов. Другими частицами были позитроны,- положительно заряженные частицы с массой, в точности равной массе электрона. Помимо этого существовало нейтрино различных типов- призрачных частиц, не имеющих ни массы, ни электрического заряда. Но нейтрино и антинейтрино не аннигилировали друг с другом, потому что эти частицы очень слабо взаимодействуют между собой и другими частицами. Поэтому они до сих пор должны встречаться вокруг нас, и они могло бы стать хорошим способ проверки модели горячей ранней Вселенной. Однако энергии этих частиц сейчас слишком малы для их наблюдения.

Во время эры лептонов имелись такие частицы как протоны и нейтроны. И наконец, во Вселенной был свет, который, согласно, квантовой теории, состоит из фотонов. В пропорциональном отношении, на один нейтрон и протон приходилось тысяча миллионов электронов. Все эти частицы непрерывно рождались из чистой энергии, а затем аннигилировали, образовывали другие виды частиц. Плотность в ранней Вселенной при столь высоких температурах была в четыре тысячи миллионов раз больше, чем у воды.

Как говорилось ранее, именно в этот период происходит интенсивное рождение в ядерных реакциях различных типов призрачного нейтрино, которое называют реликтовым.

Начинается радиационная эра, в начале которой Вселенная вступает в эпоху излучения. В начала эры (10 с) излучение интенсивно взаимодействовало с заряженными частицами протонов и электронов. Из-за падения температуры фотоны охлаждались, и в результате многочисленных рассеяний на удаляющихся частицах уносилась часть их энергии.

Рис. 2

Примерно через сто секунд после Большого взрыва температура падает до тысячи миллионов градусов, что соответствует температуре самых горячих звёзд. При таких условиях энергии протонов и нейтронов уже недостаточно для сопротивления сильному ядерному притяжению, и они начинают объединяться друг с друг с другом, образуя ядра дейтерия- тяжёлого водорода. Затем ядра дейтерия присоединяют другие нейтроны и протоны и превращаются в ядра гелия. После образуются более тяжёлые элементы - литий и бериллий. Первичное образование атомных ядер рождающегося вещества продолжалось недолго. После трёх минут частицы разлетелись так далеко друг от друга, что столкновения стали редким явлением. Согласно горячей модели Большого взрыва, около четвёртой части протонов и нейтронов должно было превратиться в атомы гелия, водорода и других элементов. Оставшиеся элементарные частицы распались на протоны, представляющие ядра обычного водорода.

Через несколько часов после Большого взрыва образование гелия и других элементов прекратилось. В течение миллиона лет Вселенная просто продолжала расширяться и в ней почти больше ничего не происходило. Существующая в тот период материя начала расширяться и охлаждаться. Значительно позже, через сотни тысяч лет температура упала до нескольких тысяч градусов, и энергии электронов и ядер стало недостаточно для преодоления действующего между ними электромагнитного притяжения. Они начали сталкиваться между собой, образуя первые атомы водорода и гелия (рис 2).

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ   Следующая >
 

СКАЧАТЬ ОРИГИНАЛ
Теории происхождения Вселенной