Меню
Главная
Авторизация/Регистрация
 
Главная arrow Прочее arrow Космический аппарат

Список использованных источников

[1] Farquhar, R.W. The Control and Use of Libration-Point Satellites. Department of Aeronautics and Astronautics, Stanford University, 1968.

[2] G. Gomez, J.J. Masdemont, J.M. Mondelo Dynamical Substitutes of Libration Points for Simplified Solar System Models // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.373-398.

[3] C. Ocampo An Architecture for a Generalized Spacecraft Trajectory Design and Optimization System // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.529-572.

[4] J.A. Kechichian, E.T. Campbell, M.F. Werner, E.Y. Robinson Solar Surveillance Zone Population Strategies with Picosatellites Using Halo and Distant Retrograde Orbits // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.153-170.

[5] G. Gomez, J.J. Masdemont, J.M. Mondelo Libration Point Orbits: a Survey from the Dynamical Point of View // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.311-372.

[6] G. Gomez, A. Jorba, J. Masdemont, C. Simo Dynamics and Mission Design near Libration Points, Vol. III Advanced Methods for Collinear Points. World Scientific Publishing Co. Ptc. Ltd., 2001.

[7] E. Perozzi, S. Ferraz-Mello Space Manifold Dynamics: Novel Spaceways for Science and Exploration. Springer, 2010

[8] H. Hechler, J. Cobos Herschel, Planck and Gaia Orbit Design // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.115-135.

[9] J. Cobos, J. Masdemont Astrodynamical Applications of Invariant Manifolds Associated with Collinear Lissajous Libration Orbits // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.253-268.

[10] G. Gomez, M. Marcote, J.J. Masdemont Trajectory Correction Manoeuvers in the Transfer to Libration Point Orbits // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.287-310.

[11] D.W. Dunham, C.E. Roberts Stationkeeping Techniques for Libration-Point Satellites // The Journal of the Astronautical Sciences, V. 49, N. 1, P.127-144.

[12] C.E. Roberts The SOHO Mission L1 Halo Orbit Recovery from the Attitude Control Anomalies of 1998 // Proceedings of the Conference “Libration Point Orbits and Applications”, Spain, 2002, P.171-217.

[13] G. Gomez, K. Howell, J. Masdemont, C.Simo, Station-keeping strategies for translunar libration point orbits. AAS/AIAA Spaceflight Mechanics, 1998.

[14] D.C.Folta et al. Earth-Moon libration point orbit station-keeping: Theory, Model and operations // Acta Astronautica, V. 94, I.1, 2014, P.421-433.

[15] K.C. Howell, H.J. Pernicka Stationkeeping method for libration point trajectories // Journal of Guidance and Control, V. 16, 1993, P.151-159,

[16] C. Simo, G, Gomez, J. Llibre, R. Martinez, Station keeping of a quasiperiodic halo orbit using invariant manifolds // Second International Symposium on Spacecraft Flight Dynamics. European Space Agency, Germany, 1986, P.65-70.

[17] C. Simo, G. Gomez, J. Llibre, R. Martinez, J. Rodriguez On the optimal station keeping control of halo orbits // Acta Astronautica, V. 15, I. 6-7, 1987, P. 391-397.

[18] M. Kakoi, K. Howell, D. Folta Access to Mars from Earth-Moon libration point orbits: Manifold and direct options // Acta Astronautica, V. 102, 2014, P. 269-286.

[19] И.С. Ильин, Выбор номинальной орбиты КА «Миллиметрон» из семейства периодических орбит в окрестности точки либрации L2 системы Солнце-Земля // Препринты ИПМ им. М.В. Келдыша, 2013 г., №46.

[20] Сайт астрокосмического центра Физического института им. П.Н. Лебедева РАН, URL: http://www.asc.rssi.ru/millimetron/millim.htm (дата обращения: 10.05.2014).

[21] Ильин И.С., Сазонов В.В., Тучин А.Г., Построение ограниченных орбит в окрестности точки либрации L2 системы Солнце-Земля // Препринты ИПМ им. М.В.Келдыша, 2012, №65.

[22] Бобер С.А., Аксенов С.А., Николаева Ю.А. «Исследование зависимости формы ограниченной орбиты КА от начального вектора состояния в окрестности точки либрации L2 системы Солнце-Земля» // Новые информационные технологии в автоматизированных системах: материалы восемнадцатого научно-технического семинара, М., 2015.

 
Если Вы заметили ошибку в тексте выделите слово и нажмите Shift + Enter
< Предыдущая   СОДЕРЖАНИЕ
 
СКАЧАТЬ ОРИГИНАЛ
Космический аппарат
Введение1. Современные методики удержания космического аппарата на ограниченной орбите вокруг точки L2 системы Солнце-Земля2. Стратегия удержания КА на гало-орбите вокруг точки L2 системы Солнце-Земля2.1 Математическая модель2.2 Описание стратегии удержания КА2.3 Реализация стратегии удержания КА2.3.1 Алгоритм подбора начальной скорости и величины корректирующего импульса2.3.2 Моделирование технических ограничений2.3.3 Сценарий, моделирующий движение КА на гало-орбите с периодическим применением корректирующих импульсов2.4 Методика расчета направления неустойчивости3 Применение разработанных инструментов к моделированию движения КА на гало-орбите3.1 Исследование зависимости энергетики поддержания гало-орбиты от места и направления исполнения импульса3.2 Исследование влияния неточности определения параметров КА на геометрию гало-орбиты3.2.1 Исследование случая неточного определения скорости КА3.2.2 Исследование случая неточного определения координат КА.3.3 Результаты расчета направлений устойчивости и неустойчивости3.4 Интерполяция направления неустойчивости3.5 Зависимость направления неустойчивости от координаты Z3.6 Имитационное моделирование движения КА на гало-орбите с учетом направления неустойчивостиЗаключениеСписок использованных источников